
DOCUMENT RESUME

ED 136 826 IR 004 625

AUTHOR Koffman, Elliot B.; Perry, James
TITLE An Intelligent CAI Monitor and Generative Tutor.

Final Report.
INSTITUTION Connecticut Univ., Storrs. Dept. of Electrical

Engineering.
SPONS AGENCY National Inst. of Education (DHEW), Washington,

D.C.
BUREAU NO 020193
PUB DATE Jun 75
GRANT OEG-0-72-0895 - -
NOTE 68p.; For related document, see 'ED 078 681

EDRS PRICE EF-$0.83 HC-$3.50 Plus Postage.
DESCRIPTORS College Students; *Computer Assisted Instruction;

Computers; *Concept Teaching; Engineering Education;
High School Students; Individual Instruction;
*Mathematical Concepts; Models; *Problem Solving;
Program Descriptions; Programed Tutoring; Programing;
Systems Concepts; *Tutorial Programs

IDENTIFIERS CAILD4 CAI System for Logic Circuit Debugging and
Testing; *Generative CAI; Generative Tutor;
Interactive Student LISP Environment; ISLE; LISP;
Machine language Tutor; MALT

ABSTRACT
This final report summarizes research findings and

presents a model for generative computer assisted instruction (CAI)
with respect to its usefulness in the classroom environment. Methods
used to individualize instruction, and the evolution of a procedure
used to select a concept for presentation to a student with the
generative CAI system are described. The model served as the basis
for the design of a CAI system, teaching problem-solving in an
introductory course in digital systems design. The system
individualizes the instruction which each student receives in
accordance with its record of his past performance. In addition, a
heuristic technique is used to determine the best path fom. each
student through the tree of course concepts. The refinement of this
method of concept selection is described. An evaluation of the
generative CAI system and results of classroom usage are also
presented. (Author/DAG)

Documents acquired by ERIC include many informal unpublished *

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the qualitY *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original.

U.S. DEPARTMENT OF HEALTH.
EOUCILTION IL WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATEO DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

Final Report

Project No. 020193

Grant No. OEG-0-72-0895

An Intelligent CAI Monitor and Generative Tutor

Elliot B. Koffman

James Perry

University of Connecticut ,

Department of Electrical Engineering

and Computer Science

Storrs, Connecticut 06268

June 1975

The research reported herin was performed pursuant to a grant with

the National Institute of Education, U.S. Department of Health, Ed-

ucation and Welfare. Contractors undertaking such projects under

Government sponsorship are encouraged to express freely their professional

iudgement in the conduct of the project. Points of view or opinions

stated do not, therefore, necessarily represent official National Institute

of Education position or policy.

U. S. Department of

Health, Education and Welfare

National Institute of Education

ABSTRACT

This paper describes a model for generative computer-assisted instruction.

This model has served as the basis for the design of a CAI system used to teach

problem-solving in an introductory course in digital systems design. The system

individualizes the instruction which each student recetves in accordance with

Ics record of his past performance. In addition, a heuristic.teehnique is used

to determine the best path for each student through the tree of course concepts.

The refinement of this method of concept selection is described. An evaluation

of the GCAI system and results of classroom usage are also presented.

TABLE OF CONTENTS

I. Description and Evaluation of a Model for Generative CAI

1NTROD1 CTWN
Modal- for Cenorativa CAI ((ICA')

PAGE

r

A. Introduction
B. Course Structure
C. Problem Generator
D. Problem Solvers and Solution Monitors
E. Review Mbde and Example Mode

3. Some Choice Function for CAI

A. Introduction
B. Determining the Current Plateau
C. Concept Selection

4. Results and Conclusions

II. Generative CAI in Machine Language Programming

1. Introduction

4
5

8

8'

8

9

10

14

17
2. Results and Conclusions 21

III. Computer Assistance in the Digital Laboratory

1. Introduction 23
2. System Overview 23
3. System Evaluation 26

IV. A Generative Approach to the Study of Problems

1. Introduction
2. The Generation Process

A. Problem Generation

3. Duality and Problem Solution
4. Abstract Problems

27

28

29

30
31

A. :Construct:Ions on Abstract Problems 32
B. Power 32
C. Union 33
D. Composition 34
E. Cascade 35
F. Map 35

5. Solution Routines 36
6. Control 37
7. COimputation Issues 37
8. Conclusions 38

1 1

TABLE OF CONTENTS
(continued)

V. A Natural Language LISP Tutor

I. Introduction' 40
2. System Organization 42
3. The Grammar and its Implementation 44
4. The Semantic Routines 45
5. Conclusions 47

VI. Overall Evaluation 48

REFERENCES

kppendix A - Examples oi Problem Generation

kppendix B - ISLE's BNF GRAMMAR

5

UST OF FIGURES PALE

Vigure 1 - System Elock Diagram 2

VLgurv 2 MALT Block Diagram 19

Figure 3 CAILD Hardware Configuration 26

Figure 4 - ISLE System Organization 43

LI T OF TABLES PAGE

Table 1 Probabilistic Grammar Example 5

2 Student Interaction in Problem. Solution 7

3 Student Record 10

Table 4 Original Independent Variables 11

5 New Independent Variables 13

6 Regression on Groups 713

7 Student Qtbstionnaire 16

Table 8 MALT Sample Dialogue 20

9 MALT Student Evaluation 22

10 CAILD Sample-Dialogue 24

11 Sentences and Their Translations to LISP Functions 45

12 - Semantic InforMation for the Structure Atom 46

,:f5ft'41. INTRODUCTION

Over the past few years, we have been exploring the concept of generative
computer assisted instruction MAIL This paper summarizes the findings of
this research with respect to the usefulness of a generative CAI system in a
clasaroom environment. The paper describes rethods used to individualite
instruction and the evolution of a procedure used to select a concept for
presentation to a student working with the CAI system.

This paper is concerned with problem oriented system*. In a typical drill
,.nd practice system values are generated and substituted for variables in a
prestored question format. The values of the variables are constrained so that
the resulting problem is meaningful and of an appropriate difficulty level. In

this way some of the semantic content of a question is provided. In a problem

oriented generativl system, a problem is generated from a grammar or other
suitable structure. Both the syntax and semantics of a problem are determined
by the system. Thus, a richer variety of problems can be generated. In addi-
tion, the system has the potential of controlling the generation process so that
it ean tailor ihe difficulty and area of emphials to suit the individual student.

A generative CAI system must have the capability of solving the problems

that it generates. Usually, the problems will cover a specific approach to

design or a solution algorithm. They will be more complex and involved than the

manipulations performed in a drill and practice environment. Indeed, the

incorporation of problem solving capability and semantic knowledge indicate the
need of an Artificial Intelligence (AI) approach to generative CAI design.

However, the problem solvers needed in CAI applications are less difficult to
design for the following reasons: 1) they are concerned with specific problem
types in a specific subject area 2) they are generally more algorithmic than

heuristic 3) they are supplied with problem generation iaformation including

parameters necessary for solution and do not have tb extract this information

from the problem representation. Bobrow's STUDENT (1) and W1nograd's SHRDLU

(2), for example, must first interpret the problem statement and extract essen-

tial information prior to obtaining the solution.

Nevertheless, generative CAI systems have benefited and can benefit further

from research in artificial intelligence on nataral language understanding,

question - answering, problem solving, and automatic programming (3). Specifi-

cally, AI can be beneficial in the design of more general solution routines so

-2-

that it will not be necessary to implement a solution routine for relatively small
problem classes. AI techniques can also contribute to the construction of solution
routines to holP achieve more powerfUl generation systems. On the other hand,
study.of generative CAI and generative techniques can make a contribution to
artificial intelligence by providing results, for example, on ways of identifying
and. using control (generation) information to design efficient and practical AI
systems.

2. MODEL,FOR GENERATIVE CAI (GCAI)

A. Introduction

Figure 1 is a block diagram of a GCA/ system. To individualize instruction,
this system needs a model of the course and the student - the concept tree and
student record respectively. After a concept has been selected and the appropriate
level of difficUlty determined, a problem is generated and presented to the
student. The subsequent interaction and monitoring of the student's solution
is a function of his performance. Each Of the components in Figure 1,will be
discussed below.

Concept
Tree

Student
Record

Figure 1. System 51ock Diagram

9

B. Course Structure

A course can be modeled as a hierarchical tree structure in which each node
represents a 'concept and corresponds to the following information:

1) concept number

2) concept name

3) a list of doubles; the first element of each pair is the number of a

prerequisite concept and the second, a flag indicating whether or not a
prerequisite may be called as a subroutine

4) the plateau for that concept (how far up on the tree it is), which

implies its relative complexity

5) the name of the problom generator for that concept
6) the name of the solution routine

7) a list of parameters which are passed from the problem generator to the
solution routine

For example, (C7, BINARY MULTIPLICATION, ((C4 0), (C5 1)), 2, PROB1, BINMUL,
(levC7, levC5, multiplicand, multi,,lier)) means that C7 deals with binary multi-
plication. There are two prerequisites. One of the prerequisites may be called

as a subroutine, (C5 - binary addition). C7 is on plateau 2 of the concept tree.
The parameters passed from the problem generator PROB1 to the solution routine,
BINMUL, are the student's levels of proficiency in concepts C7 and C5, together
with_the multiplicand and multiplier for the generated problem.

The level of proficiency in C7 (45<leyC7<3)determines the difficulty of the

problem to be generated and the degreeOf instruction and monitoring to be
received by the student while working on a binary multiplicationpraaem. The

parameter levC5 is needed in the event concept C5 is called as a subroutine.

This representation is general and has been used in a system for digital
systems design (4) and a system for high school algebra (5). In a varied form
it has also been used for a machine language programming WAX system (6).

The digital systems design GCAI course contains twenty-one concepts begin-

ning with basic logical operations and number conversions (Plateaus 1, 2),

combinational design and timing diagrams (plateau 3), minimization techniques

(plateau 4), sequential design (plateaus 5 6) and register transfer operations

(plateau 7).

The arcs of the tree structure (concept tree) represent prerequisite or

subconcept relations; the latter indicated by a flag. More generally, the arcs

10

-4-

can represent other relations of interest. In machine language programming (0,

the concepts are small sections of a progran called input primitiveS, processing
primitives, and output primitives. Tbe relation of in+erest is concatenation.
The nodes of the concept tree represent the primitives and the arcs represent
possible concatenations of the primitives to form;-more complex problems.
C. Problem Generator

Only two problem generator routines are used for the first thirteen concepts

in the digital systems course. This is due to the fact that there is a great
deaL of similarity between the parameters needed for these routines. Several of
these routines require a variable number of binary, octal decimal, or, hemdecimal(
character strings as parameters.

A viabl model for a problem generator is that of a probabilistic grammar.

A context fvce probabilistic grammar is a formal grammar whoserewritt....r.ules,haVe

a single nonterminal symbol on the left (generating symbol). Moreover, each re-

write rule has a non-zero probability associated with it such that the sum of
the probabilities of the rules with the same generating sYmbol is one. In order

to obtain problems of 7arying degrees of complexity, the probability of each re-
write rule is made a function of a student's level of proficiency in the concept

being studied; rewrite rules leading to more di.rficult problems become more

likely as a student's proficiency increases. The probabi3,ties can also be made

functions of the estimated difficulty of the partielly geuerated problem. For

example, the depth of nesting in a logical expression is one indicator of

difficulty. The probability of rewrite rules which tend to produce nested

subexpressions exceeding a preset threshold shouLi drop to'zero. This makes

the probabilities context sensitive and keeps the problems from getting out of

hand.

The grammar for the problem generator associated with each concept consists

of a 7-tuple of the following format:

G = (S,N,T,R,P,Z,D)

where S is the starting symbol, N is the set of nonterminal symbols, T the set

of terminal symbols, the set of rewrite rules. P is an array of probabilities

with three columns since it was preferred to distinguish between only three

categories of problem difficulty. The student's previous level of performance

in a problem determines which column of probabilities will be used during the

11

-5-

generation of a problem. Each row in P corresponds to a rewrite rUle. The

probabilities,aesociated withrewrite-rules haliing the same-generating-symbol--

sum to one over each column of the array.

P is a function which may be used to calculate the difficulty of the

partial output string and Z is a vector of difficulty thresholds as mentioned

above. For most problem classes, neither D nor Z were deemed necessary.

Table 1 is an example of a grammar which generateajlogical expressions fOr

the concepts which teach truth table formation and the analysis of sequential

circuits.

The first column in the array P is the vector of prbbabilities for beginning

students, the second column is for intermediate level students, and the third

column is for advanced students. The harder operators + (nand), 4- (nor), and

(exclusive-or) become more likely as a student's proficiency'increases. Simi-

larly, the number of distinct variables likely to appear in an expression

increases with student proficiency. Rules R
1
/R

2
which expand the expression also

become more likely. The vector Z specifies that the probability of these two rules

drops to zero when the length of the expression exceeds the Student's proficiency

level by a factor of twenty.

Table 1: Probabilistic Grammar Example

N = {A,*}

T = {p,q,r,s

S A

A -4- (A*A) 725 .3 .35 20

R
2

A ÷ (A) .25 .3 .35 20

R5: A --)- p .25 .14 .07 1000

R4: A --)- q .25 .13 .07 1000

R5: A -4- r 0 .13 .08 1000

R6: ,A -+ s 0 0 .08 1000

R7: * --)- " .5 .2 0 1000

R8: * --)- -5 .2 0 1000

It9: * ''''
+ 0 .2 .34 1000

R
10

* -+ 4- 0 -.2 .33 1000

R +
11'
.* -24ii 0 . . 33

--- 1000

D -1---13-tig--.-1---(!?-P---"si-211),
proficiency level

12

-6-

D. Problem Solvers and Solution Monitors

In order to solvc the problems generated, a set of augmented solution

algorithms is provided, one per concept. These algorithms were augmented with

additional information. Each distinct subtask in the algorithms is identified

and provided with: (1) generation threshold, (2) question format, (3) remedial

format set, (4) answer comparator, (5) increment and decrement multipliers.

The generation threshold indicates a proficiency lev01 beyond which a

student's solution to the subtask will not be monitored.

The question format is a skeletal pattern into which problem dependent

variables will be inserted. The formats are used for generating questions

concerning each subtask.

The remedial set is utilized when a student's answer does not match the

system's solution. It usually consists of formats which provide same explanation

ot the correct solution procedure in the context of the current problem. Each

format has an associated threshold level. If a student has a proficiency level

greater than the threshold, the remedial statement is not printed out. Hence,

the completeness of the explanation provided by the remedial set decreases as

student proficiency increases.

The answer comparator determines the degree of correctness of the student

solution. In most cases, the degree of correctness can be determined by matching

the solution strirg derived by the system with that provided by the student. For

some algorithms the comparator consists of an analysis routine which determines

the type of error being made by the student in order to provide more meaningful

remedial commentary. The analysis routine may make use of portions of the solution

algorithm to assist in characterizing the student's error. This allows the system's

procedural knowledge to be used to make remedial commentary more meaningful.

The increment and decrement multipliers determine the amount of increase in

proficiency level for each correct solution to a subtask and the decrease for each

incorrect solution. In this way, each subtask is weighted to produce the desired

degree of change in level. As part of the increment and decrement, a factor based

on the student's prior performance in a concept is calculated just before the algorithm

is called. This factor tends to produce increments mhiCh ere larger thandecrements.

13

for Itudents who are performing well and vice7versa for students performing poorly.
Thus, Jod r..tudents are penalized less for an occasional error and poorer students
are required to hecome more consistently correct in order to advance to the next

higher level range.

The augmented solution algorithm leads a beginning student carefully through

solution procedure while providing more freedom and less interaction for advanced

students. The degree of freedom and monitoring is dynamically adjusted as a student's
level of performance changes. Table 2 gives examples of_the varying degree of_

i,raetion possible. Reference 4 describes problem generation and solution in
greater detail.

TAIii,E 2: Student Interaction in Problem Solution

Initial Level Range 0-1
Form the logical AND of 7345,2206 in the base. 8:
Tair:' corresponding pairs of digits startirg at
the right: .

What is the binary equivalent of. 5?
101

T.ihat is the binary equivalent of 6?
111
:Cio. The binary equivalent of 6 is 110.
What is the logical AND of 101,110?
100
What the logical AND of 5, 6?
4 (Note: Here student's level becomes >1)
What in the logical AND of 4,0?...

Initial Level Range 1-2
Vorm the logical AND of A2.4,1.C4 in the base 16:
Modify A2.4 by adding trailing and/or leading zeros.
0/%2.4

No. AY.4 should he changed to A2.40
Modity 1.C4 by adding trailing and/or leading zeros.
nl.C4

rorm the logical AND of A2.40,01.C4 in base 16:
Taking corresponding pairs of digits starting at
the right:

What is the logical AND of 0,4?'
0

What is the logical AND of 4,C?...

Initial Level Range 2-3
rorm the logical AND of C3.4,1.493 in the base 16:

1: the logical AND of C3.400,01.493?

1ogic,11 of C3.40, 01.493 is 01.400

14

-8-

L. Review Mode and Example Mode

Two additional and extremely attractive benefits of this generative approach

to CAI are the capability to operate in a review mode and an example mode. After

the concept has been mastered (proficiency level >3), all subtasks will be solved

by the system and no solution monitoring will take place. Only summarizing data

and sub-concept solutions will be printed out. A student can use this mode to

quickly obtain solutions to several of the more difficu4 problems for later self-

When dealing with a new concept, the student may be uncertain as to some details

of the solution procedure. There is occasionally some ambiguity in questions which

are posed. Also, while variable formats are allowed for the student's response,

the system is usually better able to handle certain formats than others. To alle-

viate these difficulties, an example mode may be entered by setting a flag which

cates each question posed to the student to be followed by a "write" statement

rather than a "read" statement. The net effect is for the system to correctly

answer all of its own questions instead of monitoring the student's response. The

student is able to familiarize himself with the content of the conccpt and see what

wil3 1,c. expected of him. With each question, the proficiency level temporarily

increases so that the student observes a change in solution monitoring similar to

that which would e obtained during normal interaction with the system. The example

mode option is made available prior,to a student's initial use of each concept and

is almost always used.

3. SOME CH01CI: FUNCTIONS .FOR CAI

r. Introduction

The systems concept selector selects a concept for study based on a student's

pe:t performance. The concept selector is the interface between the student and

:Le tree of course concepts. It determines which concept is 'best' for a student

al ary riven time, and it traces an 'optimal' path for each student through the

concept tree.

:t is difficult to measure the 'goodness' of a particular concept choice and
*

tLere would probably be no consenus among educators as to which particular concept

I.est for a student at a particular point in time. The goals of concept selection,

Lowi.ver, are necessarily clear. The time spent by each student in mastering the

15

(v,itirL;0 Hiould bo kept to a minimum. Thus, he should not be required to waste
! on concepdlready mastered; nor should he be expected to solve a problem
if c iia!; not shown mastery of its prerequisite concepts. The intent is .to pace

him through the course concepts as quickly as possible without confusing-him. .

There have been many studies on.the effect of learner versus system control in

.YAI environment. These studies seem somewhat inconclusive to date. Rather than

r.,trict the f.tudent to one mode of control, the approach.taken was to attempt to
_

the 1,est lol of concept selection possible, but to always provide the student

ie opportunity to veto any individual system selection or to take control and

hypass system selection entirely.

The task of concept selection is done in two phases: the first phase deter-

mines the current plateau of the concept tree; the second selects the actual concept

to !:o worked.

B. Determining the Current Plateau

A record of past performance is maintained for each student. This student

model is shown in Table 3. The twelve items in the table are saved for each of
\

the twenty-one concepts of the digital .F.;:tems design course. As mentioned above,

the difficulty of the problem generated, and the amount of instruction and monitoring

a student receives is proportional to his level of competence in that concept. A

student's level of competence is a real number between .5 and 3. It is incremented

by a small amount (1614.28) for each correct answer and decremented for each in-

correct answer. As a student will normally answer more questions correctly than in-

correctly, his level should gradually increase.

In addition, for each student, the system saves the current plateau and

performance regulator, called the master average. The master average varies

between 1.4 and 2.5. A significant increase or decrease in concept level

(1,114.5) results in a proportional change in the master average in the oppo-

site direction. Consistently good performance will result in a low master

average. The master average is rpdated after each problem is completed.

16

-10-

TABLE 3: Student Record

1 Th,. pro!.oht]evol for each concept (L)
A woiyhted averago of level changes for each concept (WTAVG)

3 La:.t level change (AL)
4 The date each concept was last worked
5 A sequence number indicating the ordering of system selection
6 # of times concepts worked in 0-1 range
7 II of times concepts worked in 1-2 range.
8 # of times concepts worked in 2-3 range
9 Date number of last time each concept worked
10 # of times student rejected each concept
11 R of times each concept was selected by system and'accepted by student

When a student's average level in all the concepts at his current plateau

oxceeds his master average, he is eligible to proceed to the next plateau.

Consequently, the better a student performs, the faster he will progress up through

the concept tree. It is possible that a concept will only be worked once or even

not at all. For this reason, a post-test is given whia consists of a challenging

question for each concept. As a result of the post-test, the system advances him

to the next plateau or may require him to review each concept whose corresponding

post-test question was answered incorrectly. The decision whether or not to review

a concept is based on the number of times he has worked that concept, his level in

thar concept, and his master average.

If a student is advanced to the next plateau, a pre-test is given to initialize

the levels for the concepts on that plateau. The pre-test consists of a set of

three or four questions for each concept. The questions get progressively more

ditficult. A student is given two tries at each question and branched to the next

et of questions if both answers are incorrect. The starting level for each con-

cept is a function of how many of the set of questions dealing with that concept

were answered correctly. The starting level ranges from .5 to 1.0.

The pre-test for the first plateau is also used to initialize the master average.

The more questions answered correctly in the first pre-test, the lower will be the

:,tartinp master average.

C. Concept Selection

There are three or four concepts on most plateaus of the concept tree. A

preliminary, check is first made to ensure that the average level of the prerequisites

for each concept exceeds the student's master average. If this is not the case,

17

thi:: concept I:, repiaced as a candidate by its prerequisite with the lowest level.

%Ids provides an additional opportunity for review in case the student has been
prcvresbing too rapidly.

Statistics are available from each student's record (refer to Table 3) con-
cerning the last date each concept was used, its current level, the last change in

level, and the number of times the concept has been selected by the system or

pojectod by the student in the past. From this'data, many parameter values can be

Aoulated For each concept and input to the concept selector. The concept selector

empts TO predict which concept will advance the student the most in the course.

A scoring polynomial as used by Samuel (7) in his well-known Checkers program

1,4!; the ba,sis for the concept selector. A scoring polynomial consists of a set of

parameter values to be calculated for each considered move and associated co-

efiicients or weights. A preliminary training period was undergone in order to

determine a Food set of coefficient values. During actual play, the move which
_ .

scored the highest was always made. In a similar manner, the concept which scores

rLo highest among those being considered should be selected for presentation to

the student.

Samuel's model assumes that there is a single "best move" at any point in the

patue However, the "best concept" for a given student may depend on his particular

lnarner prefeences and personality traits. Consequently, it was decided to provide

Cor four separate sets of polynomials and use a student's past perfomance to deter-

mine which set appeared best suited to him.

Two training periods were undergone by the system in order to define four

:Icor10. polynomials. Initially, a single scoring polynomial which appeared to

work reasonably well was derived. This polynomial is shown in Table 4

TABLE 4: Original Independent Variables

Var, 1 (2*tLI)2*w1 w1=1 if LI<O;

Var. 2

Var. 3

Var. 4

=0 if Lilo

(Q-QI)/(Q-90*w2 w2=1.2 if Q

=3 if Q1=0 (Concept never worked)

R*w3 R=ii of uses of a concept-at present level range
(0-1, 1-2, 2-3)/total number of times worked; w3=-1

IALII/Li*w4 w4=1

18

Var. 5

Var.

-12-

Table 4: Continued

(TD-1-Tp)*w5 w5=.1

(3-LI)*w6 w6=1 if L143

=-25 if Li.

Level of concept I;

LI: Concept level; AL; Last level change; for concept I
I:: Current concept being considered; Qm: Minimum sequence number of

all concepts on present plateau
Q:: Current sequence number; Q1: Sequence number of last time concept

I was worked
TD: Number of prerequisites directly callabln as subproblems; Tp: Total

number of prerequisites

The rationale for the parameters of the polynomial was as follows.

Pardmeter 1 contributes to the weighted sum if the student's level in a concept

ha:: just dropped. Obviously, he has not mastered this concept. A decrease in

level normally results in more system monitoring and help. Parameter 2 favors

the concept that has been waiting the longest. Parameter 3 favors a concept that

is in a new or relatively unstable level range CR << 1). Parameter 4 favors a

concept whose level is changing rapidly. Parameter 5 favors the concept which

is based on the most prerequisite concepts since working this concept will help

to review earlier concepts. Parameter 6 favors,the concept which currently has the

lowest level. When a concept has been mastered (level > 3) a large decrevent

is added to that.concept's score.

Observation of students
.

in the course showed that they initially relied

heavily on the concept selector. As the course progressed, they assumed more

of the task of concept selection. Part of the reason was their\increased familiar-

ity with th,, course contents and knowledge of their weaker areas. This aspect

of the sit.uHtion'was encouraged as it normally resulted in less waiting time

between concepts and the students seemed quite proficient at determining their

own needs.

Por two semesters, data was collected on all student and system concept

(8). A record was kept of parameter values for each considered concept,

tho ,ictu.11 (:oncepl selected, student acceptance or rejection, and subsequent change

in levol Uhr thal concept. Fourteen additional parameters were added to the

oripLal t;ix (see Table 5) and a multiple linear regression analysis was performed

to calcu3dLo optimal coefficients for the twenty independent variables. The

dependent voriahle value associated with each concept selection was made proportional

to Olv rcsultng change in level as the goal of concept selection was to advance

the !;tudent as rapidly as possible.
19

-13-

TABLE 5: New Independent Variables

Var. 1-Var 6 same as Table 4
Var. 7 ALI (last level change)
Var. 8 WTAVGI (weighted average level change)
Var. 9 LI (level)
Var. 10 # of days since last worked concept I
Var. 11 # of days since last used system
Var. 12 Total of # of concept worked
Var. 13 Total # of days worked
Var. 14 Var. 12/Var. 13
Var. 15 # of times student worked concept I
Var. 16 # of times student rejected concept I
Var. 17 # of times system selected concept I
Var. 18 # of times student selected concept I
Var. 19 Var. 16/Var. 17
Var. 20 0 of times worked concept I at present level range

This intermediate step produced a single scoring polynomial which should

thoorotically be better than the original polynomial with only six variables'

.and non-optimal coefficients. To compara-these polynomials, a second regression

nalysis Was performed using only the original six independent variables as

predictors.. This analysis produced a multiple correlation coefficient of .18

s compared to .48for the expanded scoring polynomial.

The final step was to perform:a cluster analysis on the data.collected in

an attempt to identify four groups of similar.students. The results are shown

.in Table 6 along with the.multiple'correlation coefficient associated with

each group. 'For all except group #3, this coefficient is-higher than that

associatedwith the population as a whole (.61, .61;"%43, .53:versus .48) and

should thus lead to improved concept selection' for the majority 'of students.

troup #1

Var.# iT

TABLE 6: Regressions on Groups

Group #2 Group #3

Var.# B1 F
I

Var.#1II F
I

Group #4

Var.# B
I

F
I

19 -1.226 100.884 19 -.895 30.696 1 .561 30.642 19 -1.348 69.251
S .427 35.684 2 .262 12.474 19 -.814 24.520 7 .375 10.848
,) - .467 14.437 20 .526 11.207 5 .301 23.871 5 .174 7.948
2 .14q 12.690 3 1.870 10.959 9 -.531 16.423 16 .125 7.795

1E,

it

.0C,3

.551
11.638
11.230

15

5

-.410
.287

8.716
8.524

10

18

.007

.126
8.416
7.887

1

9

.136

-.214
6.042
5.021

3 .482 7.067 9 -.690 8.106 12 -.003 5.091 3 .315 4.471
i? -.002 3.674 18 .240 6.572 3 .346 4.547 8 .350 3.037
/ .227 3.193 6 -.497 4.812 16 .072 3.354 6 .067 2.207
t, -.148 1.845 4 .406 2.923 6 -.167 3.134 15 -.012 1.067

p .61 p ma .61 p mil .43 p .1 .48

2 0

-14-

home ohservations from this table are that variable 19 appears at or near the
top et Pli groups. Variables 5 and 9 appear near the top of all groups. Variable
h.i;: a relatively high significance in groups 1 and 2 while variable 7 has a

relatively high significance in groups 3 and 4.

The complete concept selection cycle consists of the following steps:

1. Determine the student's current group
2. Find the current plateau
3. Identify candidate concepts
4 Fvaluate each concept using scoring polynomial for student's group.
5. Present highest scoring concept
6. Update scoring polynomial compatability ratios

:teps 2) through 5) have been discussed previously. Steps 1) and 6) are accomplished

the following manner. A compatability ratio is maintained by student for each

scoring polynomial. The student is placed im the group which has the highest compati-

hility ratio. The concept which would be chosen by each group is determined, and

the concept selected by the student's current group is presented. After completion,

the comPatibility ratios of all groups which selected this concept are updated to

reflect the student's change in performance level. In the event the student rejected

the concept selected and chose another considered concept, the compatability ratios

of all groups which chose this concept would be updated instead.

The next section will discuss results of classroom experience with this

unerative CAI system.

4. NESULTS AND CONCLUSIONS

It Is a rather involved problem to control an educational experiment carefully

enough to obtain a meaningful comparisori of one teaching method versus another.

In :.electing control groups, there are many variables which enter in such as motiva-

tion and aptitude for the course, inherent favorable or unfavorable biases towards

,mputers, and personality traits which are difficult to measure. Most of our

n!!tusiasm und interest in this project has been spurred by conversations with

:.ludents who have used this system and an examination of student questionnaires which

r.lte the sw-Item very highly as an educational tool (more on this later).

In any event, an experiment was set up during the fall semester of 1973 in

which two randomly assigned classes (determined by the unversity class scheduling

algorithm) of approximately thirty students each were designated as GCAI and control-

group respectively. Both classes had the same instructor and used the same text-

book. The basic differencesbetween the course structure for each group are shown

below: 2 1

-15-

GCAI Class Control Class

2 hou/;s of lecture/week

homework problems done thru GCAI

seven 20-minute quizzes

3 hours of lecture/week

conventional homework assignments

two 75-minute exams

The GCAI students were required to take short quizzes after each plateau.
These were administered on an individual basis and were primarily used to
oncourage students to keep a reasonable pace.

The GCAI system was implemented on an IBM 360/65 computer. Students worked
it their own pace and were free to use it whenever the time-sharing system, CPS
(0), was operating.

Prior to the start of the course, both groups were given the same pre-test
which was a simplified version of a previous semester's final exam. The mean
core for the control group was 25 out of a possible score of 100; the GCAI
class mean score was only 9. Median scores for each group were identical to the
mean scores.

Farlier analysis of past student performanoe in this course had shown the

;ingie best predictor of success to be the student's overall quality point ratio

(OPR) or cumulative average of grades since entering the university. The mean
OPP for the control group was 2.9 out of a possible 4.0 versus only 2.5 for the
ncAI group.

Both groups of students were given the same final exam; however, there was
no nignificant difference in their performance (mean score GCAI - 115/150, Control
113/150). Since the GCAI groupt spent 1/3 less time in class and was not as well
prepared for the course, this is aPvery favorable result.

This course is a prerequisite for an advanced digital design course. There
were approximately ten students from.each group in this Course during the following
!;emester. Again there was no significant difference between the grades received
by the GCAI students andthe control group.

Three different instructors have used the GCAI system over a period of two
yers. They generally feel that GCAI is'berieficial in,that it frees them from

h.tving to discuss at length routine problems and techniques. Instead they are

'11e to concentrate on more difficult concepts and intuitive approaches to design

tudents ate receiving practice in tha basic techniques and algoriihMs through
GCAI.

2 2

-16-

Ijun mentioned, student reaction to GCAI is generally quite 5avorable.
Vile results of a questionnaire returned by sixty-four students are summarized in
Tablf. 7.

TABLE 7: Student Ogestionnaire
1. I preferred this system to conventional homework assignmentsSD D U A SA

3% 14% 8% 43% 3%.
2. CAI is an inefficient use of the student's time

20% 41% 17% 16% 6%
3. I was concerned that I might not be understanding the material

11% 44% 17% 24% 3%

4. CAI made it possible for me to learn quickly

2% 16%, 17% 60% 5%
5. The CAI system did a good job of selecting concepts

9% 29% 23% 36% 3%
6. T found the "example mode" feature useful

0% 3% 9% 50% 38%

SD: !strongly disagree; D: Disagree; U: Uncertain; A: Agree;
1;A: :,trongly agree

The only question which is not responded to in a manner which indicates strong
Jccoptance is #5 dealing with the goodness of concept selection. Here 39% of

:;tudents responded favorably and 38% unfavorably. We feel this is a reasonable
Jebievement in a very difficult area of decision making where there is clearly no
f.lnye right or wrong solution. This is a somewhat better-rating than that received
by the earlier scoring polynomial.

In conclusion, we feel as do the majority of
students who have used GCAI:i

it provides an opportunity to learn by doing and is an effective way to teach
problem-oriented material. Students receive immediate feedback and learn from
their mistakes. GCAI helps a student master the basic concepts and enables the
f;iudent and instnuctor to concentrate on more advanced material.

23

ii. GENERATIVE CAI IN MACHINE LANGUAGE PROGRAMMING
i. Introduction

Prior reports have described the MALT System (MAchine ianguage Tutor -

See References 6, 10.). MALT is concerned with teaching machine-language program-
millg for a simplified version of the Digital Equipment Corporation PDP-8 mini-
computer. The instruction set of the hypothetical machine is virtually identical
to that of the PDP-8. The major difference is that this computer has only 4008
mP-ory registers; consequently, each register is directly accessible. This means
thit ;tudents can learn the fundamentals of machine-language programming without,
ihc added complexity of memory page consideration.

MALT is a generative CAI system in two important senses First, it creates
itt; own sample programming problems using a variety of heuristic techniques. 'It
is-not dependent upon the course author for a complete supply of ready-made problems
and their solutions. Instead, by beginning with only a series of basic problem
elements or sentences, it generates a problem that is consistent with the user's
present ahility.

Another important way in which the system is truly generative is its ability
to design a solution program for the problem that it 'has generated. By using
haf;ic algorithms supplied by the course instructor, the system can produce the
tctual machine code of a solution program. This implies that the system is quite
iiexible,,since later alteration and extensions involve only the addition of new
programming algorithms, not massive system:reorganization.

MALT attempts, through constant monitoring of the student's program to deter-
mine not only the existence of logical errors, but also their location in the
co;ogram. This ability enables the system to be much like'the human teacher; that

IL can note and correct logical errors before they develop into undesirable
programming,habits.

The system attempts to tailor its presentation to fit the abilities of the
students. Any problem that is generated is designed to provide the student with

a challenge, while not being beyond his capabilities. The dialogue initiated by
the system will also be governed'by the user's performance. A beginning student
will receive a wide variety of hints and suggestions for the design of his
program. Also, his errors will result in quite explicit and complete remedial
mecnages. AF, the student 1-_,)gresses through the material, he will receive less
f;ysteM information and be given more freedom in his programming actions. In

2 4

-18-

addition, the more elementary sub-tasks will be programmed for him. When the student

achievt .r. high proficiency, the system can function purely as a.problem solver in

that all programs will be generated by it. This facility is useful if a student

desires to study examples of advanced problems and their corresponding solution

programs.

A:; the system questions the student, it is constantly developing its own

I:olution program for comparison with the student's program. In this way, a given

programming concept is rarely presented the same way more than once to a particular

t;todent. The student's enjoyment of the system is thereby greatly enhanced because

he receives new dialogue with every problem.

The actual operation of MALT is straightforward. After the student identifies

himself to the system, his records are obtained and evaluated. These records deter-

mine the difficulty and content of the problem generated and the amount of instructional

guidance that the student will receive. Next a sample programming problem suited

to his abilities is generated. To help him design his program, the system will then

develop a logic chart or list of sub-tasks. These sub-tasks break the problem into

a series of smaller, more manageable steps and are of great help to the novice

programmer.

As the student undertakes each sub-task in the programming process, a

corresponding concept routine is entered by the CAI system, which guides the student

through the construction of that part of his program. During this phase, the student

is constantly being given feedback as to the correctness of his program. If his

program introduces logical errors, the system will point these out and offer help -

ful suggestions for their correction. If the system checking procedures determine

that the student might benefit from observing his program in operation, it also

has the capability to simulate statement by statement program execution
.

Figure 2 is a block diagram of the Malt system. Table 8 provides a complete

example of the operation of MALT. The comments in square brackets have been added

to clarify this example for anyone not familiar with the PDP-8 instruction set.

Each student response is preceded by a dash:. The dialogue shown is that which

would be received by a beginning student.

2 5

Problem
Primitive,

Student
Model

PROBLEM
GENERATOR

Problem

Statement

1

Primitives
Parameters

LOGIC

GENERATOR

Logical'

Sub-tasks

Concept
Secuence

CONCEPT
ROUTINES

Questipy

Program

Figure 2 - MALT Block Diagram

2 6

egments

RemediOs
Hint§

4

_ _

-20-

TABLE 8: MALT Sample Dialogue

Your problem is to write a program which will:
Read in 20 (octal, ASCII characters and store them in registers 232
through 252.
Form the sum of registers 232 thru 252 in the accumulator.
If this results in a nonzero LINK, stop with the (ACC) T. 77,
otherwise stop with (ACC) = 0000.

Is this problem OK?
Yes
Here are the sub-tasks for tbe first line. -
1) Initialize a ptr to register 232.
2) Initialize a ctr with the value of 20(oetal).
3) Read in a character.
4) Store it away using the ptr.
5) Update the ptr.
6) Update the ctr and if it is not zero, jump back to start of loop.

SUB-TASK 1:
Since we may need a ptr later, wc will store the ptr value in memory
and move it to a register which we will.use as the actual ptr.
Use M377 to store the ptr value, and M376 as the ptr.
M377:
0232
Now, get the ptr value:
Mt.'.430: [location ot 1st instruction]

:176 [add in contents of M3761
W ..ONG!
"TAD 377" is coded as :1377
And deposit it into the ptr: .

M001:
3376 [Deposit ACC into M376, clear ACC.]

SUB-TASK 2:
We will store the ctr value in memory and then move it into another
register for use as the ctr.
Use register 375 to store the cm value and register 374 as the ctr.
M375:
7757
7757 can't be used as the ctr value. Try again!
M3.75:
7760 [-20 in 2's complement form]
First, get the ctr value:
M002:
1375
And deposit it into the ctr.
M003:
3374
SUB-TASK 3:

\First, check the reader flag.
M004:
5031
Not
To check the reader flag is 6031.
Next, jump back one register if it's not ready.
M005:
5004 [JUMP to M004.)
Now, operate thc reader.
M006:
6036
SUB-TASK 4:
M007:
3376
Wrong!
"DCA 1 PTR" is :3776 [This should be an indirect deposit.]

SUB-TASK 5:
OK, update the ptr.
M010:
2376 [Increment M376 and skip next instruction if M376 contains
0000.1

SUB-TASK 6:
Now, increment thc ctr.
M011:
2374
And if not zero, jump back to start of loop.
M012:
5002
Wrong!
Thc loop starts in register 004 so it is 5004

27

-21-

2. Results and Conclusions

The system has been implemented in the CPS (9) language on the IBM 360/365

at the University of Connecticut Computer Center. Students can use this system

whenever they desire. There is also a batch mode simulator of this computer

which they use for class projects of a more ambitious nature.

;tudent redction to MALT has been very favorable. They feel this system

he1p:: to bridge the gap between what they have learned in class, or from the

toxthook, and what they need to know to program independently in batch-mode.

Normally, students spent two weeks using MALT and were then given a week to get

a rather sizeable problem coded and running in batch-mode. This proved to be

sipnificantly easier for students who had used MALT than for those whp had not

(See question 2 in Table 9).

A questionnaire was distributed to the classes using MALT. The results of

chit; questionnaire are tabulated in Table 9. It appears that the students feel

that this experience was beneficial and good preparation for learning to program

independently. On the whole, students were not bothered by the fact that MALT

requires them to adhere to a particular "flowchart". As indicated by question seven,

improvements could be made to the algorithm which determines that a generated

i,roHdm is sufficiently different from previous problems presented to that student.

Ninety students responded to the questionnaire.

28

-22-

TABLE 9: MALT Student Evaluation

ror mlestion 1-9 the percentage of students giving the following responses are
tal'ulated

!-,trongly Disagree Uncertain Agree Strongly
Disagree Agree

1. The System was useful in introducing me to machine language programming.

2 2 4 56 35

2. I:. was relatively easy to learn to use the batch version of the assembler since
I had been introduced to programming concepts through MALT

0 6 18 50 26

3. Since the sub-tasks were always laid out for me, I felt very constrainted using
MALT

5 49 21 25 0

4. Because the sub-tasks were laid out, I only learned the mechanics of programming
and really didn't understand what was going on.

9 46 31 11 3

5. The approach taken in printing out the sub-tasks was good as it taught me how
to organize a machine-language program.

0 4 20 62
6. The problem became more difficult as my level increased.

2 11 21 60

14

6

7. Tnere was a good variety in the problems I received in MALT.

6 28 17 48

8. In general, I enjoyed the interaction with MALT.

1

1

0 14 69 16

Overall, we fdel that MALT is an effective demonstration of what can be

accomplished in CAI with the limited use of AI techniques. It should be stressed

that MALT's design has been influenced by AI research, but certainly much more

cuuld be done in the way of incorporating AI Research in problem.solving and

program synthesi. The desire to produce a working system with reasonable

vesponrie time on an existing time-sharing system precluded this possibility.

lAlpefully, MALT will challenge others with an interest in. CAI and AI to purse

furter.

2 9

-23-

7. COMPUTER ASSISTANCE IN THE DIGITAL LABCRATORY

. Introduction

Most of the CAI systems implemented so far teach subject areas that are

normally being taught in a classroom environment. Very little work has been

drille in the area of laboratory instruction. Neal and Meller [11] have implemented

d !;Y:.tem which teaches students to operate laboratory electronic instruments.

In the field of computer science,.the student's backgrounds are quite

,.iverse. Many of them come from fields other than electrical engineering and

they have little or no.knowledge of the use of electrOnic laboratory equipment.

however, most of them have,learned the basic design techniques for digital

circuitry.

It is quite difficult for someone with no knowledge of laboratory instrument-

ation to implement a circuit design using standard integrated circuits. A computer

:;y:;tem has been designed and implemented to help them in the construction, debugging

and testing of a digital circuit.

2. Ov4i!rview of CAILD System

CAILD is a Computer Assisted Instruction system for Logic circuit Debugging

and testing. It is implemented on a PDP-9 computer system. (See Figure 3 for

ciaLD Block Diagram).

DISK

TTY

PDP-9
COMPUTER

Display
Terminal

A/D '

CONVERTER i

r311

CAILD
Interfacing
Network

Fieurc 3: CAILD Hardward Configuration

3 0

CAILD
Monitoring

Network
A

Student
logic Board

Test Probe

-24-

By using the CAILD system, students are able to wire up their own logic network,

debug it and test it without any knowledge of the use of laboratory instruments.

The CAIL. system consists of a Student Logic circuit board, and interface network,

a monitoring network, a test probe, a Tektronix 4010 display terminal and all

systems software that is responsible for the instruction of-logic circuit de-

bugging and testing.

The student designs a circuit and prepares a wiring diagram prior to the

e of the system. The student's circuit is wired on the Student Logic Circuit

board. NAND gates and flip-flops are provided on the circuit board. The student

merely has to interconnect logic elements on the circuit board to build the des-

igned circuit. The circuit board is then interfaced to the PDP-9 computer and

the student inputs the circuit equations into the computer.

A syntax checker checks for syntax errors made in the equations and the NAND

format conversion routine converts them into NAND format since only NAND gates

are available on the circuit board. The debugger in the system compares the out-

put of the physical circuit with the simulated output of the equations for each

possible input condition in order to verify whether the physical circuit, in

fact, realizes the given set of equations. If they do not agree, the s tem will

guide the student through the whole debugging process until all the sources of

error are found and corrected. See Table 10 for a sample sesilion.

TABLE 10: CAILD Dialogue

What is the output circuit point for variable Jl?
** Q5

Equation under test:

J1=(-XliX24Y3)+(-Xli-X2t-Y3+(X11--X2-t-Y3)+(Xl+X2+Y3);
Do you wish to print out all test conditions
(Y or N)

** N;

Simulated output condition: 1
Actual circuit output condition: 0
Input conditions: X1 X2 Y3

1 0 0

What is the output circuit point for the following term:
(-X1t-X2413)

** P22;

Simulated output condition: 1
Actual circuit output condition: 1
input conditions: X1 X2 Y3

. 1 0 0

put the test probe on the input of the next higher level gate which

31

-25-

Table 10 - continued

is connected to the output of (-X1+-X2tY3)
Type alt mode when you are ready.

** (User puts the test probe at the test point and types alt mode)
Either you have a wiring error or an open circuit at the test point.
Please correct the fault. After the correction, type alt mode
to return to the debugging phase.

** (User corrects the fault and types alt mode)
Equation under test:
J1=(-X1 -X2 Y3) (-Xl1-X21-Y3)1-(X14--X2+-Y3)+(X11.X2fI3);

Do you wish to print out all the test conditions?
(Y or N)

** N;

Testing completed for one equation'.
Please tell me the circuit point for variable Kl.

** 034;

Note: ** indicates the response for the user

After debugging the circuit, a test mode is entered. Under this mode-

the student is able to specify the input conditions and present st:te for a

sequential logic circui. If the circuit is a combinational circuit, the student

specifies input conditions only. The system applies these student specified

conditions to the physical circuit and returns the resulting outpUt and next state

to the student. By observing the output and next state Of the physical circUit,

the student is able to determine whether the physical circuit realizes the original

design.

CAILD by itself is not a complete CAI system since it does not teach

how to design logic networks. However, CAILD can be use4 in conjunction with a

CAT system in which students learn the basic concepts of compUter science. Certain

concepts in this system are devoted to the design of combinational and sequential

logic circuits. The design problems are generated by this system. The solution

to the design problem results in a set of equations which describe the circuit.

At this poiat the student can wire up the circuit on the Student Logic Circuit

Board. The circuit will be debugged and tested under the guidance of the CAILD

system. Finally, the student will obtain a working circuit for the original design

prold oni

Students can build either combinational or sequential circuits. There

.1re two sets of four flip-flops (JK and Delay) available, but only one set can

be 11:.ed at a time. Hence, sequential circuits with up to sixteen states can be

desipncld.
32

-26-

There are two external input lines, 32 NAND gates ani twelve inverters. The

outputs of either set of flip-flops can also be used as external circuit inputs for

combinational circuits. This allows the design of fairly sizeable combinational

circuits involving up to six input lines. The number of outputs for combinational

circuits is limited only by the available logic elements.

3. !";ystem Evaluation

CAILD has been used in an introductory computer science course which teaches

:he design of digital networks as well as programming a minicomputer. There were

twenty students in this class. Eleven were electrical engineers; the rest were

predominately mathematics majors. None of the students had any prior exposure

to digital design. The electrical engineers were taking their first electronics

laboratory and would encounter experiments on digital logic design later on in the

semester. The majority of students were sophomores.

The students in this class were required to design, construct, and debug

both a combinational and sequential circuit with the aid of CAILD. The majority

of students were able to successfully complete this task in about three and one-

half hours (~60 minutes design, :90 minutes wiring, ~60 minutes debugging and

testing with CAILD). Some of the circuits designed were full-adders, code-

converters, decimal counters, and shift registers.

All but two of the non-electrical engineers found this to be a very stimula-

ting part of the course as it gave them some hands-on experience applying the

concepts they had learned in class. Similarly, all but two of the electrical

ongineers found this to be a very helpful preparation for their future project

in the electronics laboratory.

The basic system is currently being expanded to include additional sub-

routines which will enable the student to make use of CAILD prior to actual

circuit construction. Students will be able to verify that their equations accurately

represent the transition table or truth table they had in mind. A wiring diagram

will he printed out and saved by CAILD for use during the debugging process.

In summary, we believe CAILD is an effective tool for teaching the use of

integrated circuit chips. It also teaches students how to locate faulty com-

ponents and detect wiring errors. It makes their classroom work more meaningful

it provides them with some actual design experience.

The .ipplication to digital network design is, of course, most natural. However,

the basic phi:lo::ophy of CAILD could be used in the computerized teaching of other

Libor.itory courses.

3 3

-27-

IV. A GENEPATIVE APPROACH TO THE STUDY OF PROBLEMS

1. Introduction

This portion of the report describes research on problem solving for generative

CAT. The goal of this research is a formalism for problem generation which is

adaptable to many different subject areas. Since any implementation for a specific

problem area will make use of application dependent information and procedures,

tho general formalism is intended to provide an approach which can be tailored

and extended as application requires.

Following sections include a model for generation, a formalism which provides

some details of the model, and examples which illustrate the use of the model.

The model incorporates heuristics which correspond in a dual manner to

Polva type heuristics for problem solution. The intent of the generation paradigm

mipht well be labeled, how to generate it. The formalism studies the possible

.Aructure a problem can have in terms of basic problems and the relationship of

tis structure to that of the solution to the problem. Possible structures of

a problem are expressed as operations on subproblems.

Heuristics of Problem Solving

In this study we should not neglect any sort of problem and Should find out

common features in the way of handling all sorts of problems; we should aim at

general features, independent of the subject matter of the problem. Moreover,

"the study, of heuristic has 'practical' aims; a better understanding of the mental

operations typically useful in solving problems" will be directly applicable to

the teaching and learning process.

In How to Solve It (12) Polya describes a problem as consisting of three parts:

tho unknown, data, and condition. He presents corresponding heuristics which can

help to find a solution to the problem. Pblya presents a general approach to

solving a problem: 1) understand the problem 2) devise a plan 3) carry out

Ole plan 4) examine the solution.

A problem can be understood by identifying its parts (unknown, data, and

condition) and by-establishing relationships among these parts with respect to

a base of semantic information.

A plan for solution may be obtained by using the semantic base to find a

connection between the data and the unknown,subject to the restraints specified

lq the condition portion of the problem. The plan will make use of subgoals which

can be derived by using related problems. A subgoal may be part of the original

prohlem, a similar problem having the same unknown, the same problem with auxiliary

3 4

-28-

elements introduced or terms replaced by their definitions. Problems may be

related aconr,1ing to subpart, analogy, specialization, or generalization. Related
pt.,Ticmin , i. .1tvad =1 i.y Vaylitg and modifying the three parts ot a.problem.

Theme heuristic guidelines are more of an 'art' than a science; it is an art to

recognize the utility of a related problem.

A plan consists of a sequence of subproblems and subgoals, each of which

:;hould be solvable, such that the combined solutions give a solution to the

original'problem. A plan directs the synthesis of a solution routine out of

.ubgoal solutions.

The third step is the implementation of the plan. Each subgoal of the plan

must be attained or an alternate found. A plan is a skeleton of a procedure for

obtaining the solution. A plan must be refined from a general form to a detailed

procedure. During this progression it may turn out thaltthe plan fails. If so

it must be patched or discarded.

The last step is solution verification. The synthesized solution routine

can, be checked by specialization, "generalization, or by variation of the'data.

Specialization is the application of the solution routine to a special case or

subclass of problems; generalization, the application to a more general problem.

The solution should work for special cases and for varied data values and perhaps

may work for other problems.

The four steps of 1) understanding 2) planning 3) execution 4) verification

dre themLielves a general plan for a general problem solver.

2. The Generation Process

(;eneration is the process of producing many specific items from a general

object. Generation is dual (treverse' process) to analysis which is the passage

frnm the specific to the general. The specific items are called interpretations;

!he penerol object, a representation.

Formally, the relationship of a representation to its interpretations is

defined as a set function from the collection of representations to the collection of

clasnes of interpretations. This set function and a corresponding representation

kayo the same expressive power as the collection of all its interpretations, and,

moreover, offer the potential of more powerful operations and transformations.

By making the set function dependent on other variables it can be constrained

z-o map into a particular subclass of interpretations. For example, it may be

made dependent on student performance or the modality of a verb; the former, for

Ihe generation of problems in CAI and the latter, for the generation of sentences

havinp verbs of a desired modality.

3 5

-29-

CAI, and, ih particular, the teaching of problem solving, (4,13) provided

th initial motivation for this investigation. Koffman utilized a concept tree,(13),

the arcs of which corresponded to subproblem or prerequisite relationships, as

a control structure which determined possible calling sequences among the generation

and solution routines of his CAI system.

A. Problem Generation

For problem generation the representation involves a set of objects and

relationships which hold between them. The set of objects and relation-

r!:ips is called a problem model. A problem itself is an inquiry which seeks

properties or consequences of a given interpretation of the model.

Following Polya, problems have a goal or solution, which may be an unknown

va]ne, a sequence of actions, a program, a proof, etc. In addition, all problems

have explicit information, the data, which is given and is usually needed to solve

a problem. Other information which is implicit may also be needed to solve the

problem. This implicit information is not part of the data, it may be contained

in a semantic network. Finally, the goal or solution is determined by the

condition expressed and any relationships implied by the problem model.

This paper will deal with quantitative problems as opposed to problems of

non-numeric reasoning, and the representation used will be a LISP list of the

form ((unknown variables)(data variables)(relation)) where each of the three items

in the list is a sublist and (relation) is a LISP routine which expresses a

relationship which holds among the data objects and the unknowns.

DenoteaproblemrepresentationbyP..Let C. denote the class of problems

represented by Pi. Problem generation, then, is a map which has P. as a dependent

vdriable and which takes values in C
i .

The sublists determine problem subclasses. For example, let C. be the

co3lection of force, mass, acceleration problems of elementary physics. Than a

suhclass of C
i

is represented by P. = ((force)(mass acceleration)(function))
ij

whore function expresses the relationship given by the equation force = mass

rwneleration.

In this context, an implementation of a generation map can involve several

phases. in the first phase, the sublists can be manipulated, combined, or

portions of them generated or deleted to produce new lists. A second phase could

provide a semal,tic interpretation of the representation list, using, for example,

..omdhtic network. A third phase could then express the interpreted list in a

36

-30-

1..vm wlIurn1 'A IirIcW.

The tirst phase is of primary concern here because the generation of representa-

tions will provide a significant increase in generative capability.

3. Duality and Problem Solution

The solution to a problem is essentially determined by the expressed and

implied relationships which hold between the data and the unknown items of a
prohlem. Indeed, the discovery of these relationships is often the goal in
solving a problem. For, example, the function of the representation ((force)
(mass acceleration)(function))., gives the key to the,subclass of force, mass,

occeleration problems represented.

Thus, in the list representation, the problem itself is represented by

((unknown)(data)) and the solution by (function).

Let C be the class of problems under condideration. A problem solving

system is described by a pair (R, S) where R represents a subclass of C and S
is a solution method or routine for this subclass.

Given a collection ((R., S.)), the formalism below investigates the following

;et of interrelated questions:

1) how can the problem subclasses be extended while keeping the collection

ufsolutionroutines,(S.1, the same

2) what are some relations on {(R., S1)1; what structures exist on this

collection

3) what manipulations and operations can be performed on the lists Pi to

produce new representations

4) (duality) what are corresponding operations on the procedures S1 which

produce solution routines for the new classes.

The duality of problem and solution operations will be expressed by an

opordtor pair which operates on the list representations, i.e. the problem operator

Jcts on ((unknown)(data)) and the solution operator part acts on (function).

Theobjects(R.,S.)aregeneralandS.could represent special routines,

:;uch ds (DEFUN SFORCE (XY) (SETO FORCE '(PRODUCT X Y)) where X will be mass and

Y acceleration.S.could also be a general problem solver such as a theorem

prover. An appealing use of a general deductive system (such as a theorem prover)

would be for high level inferences for the manipulation of the (R., S.). Also,

thedeterminationofwhichS..to employ and how to use it to solve a problem would

be decided by some other SI.
i 37

-31-

An examplo of a relationship which holds among problems is that of sub-
problem. The dual relationship on the solution routines is subsolution. This
structure is rather simple and obvious. Nonetheless, it is important for a
system to have a way of representing knowledge of such structures. What are other
structures? The structural information which a generative system uses is know-
ledge that a problem solving system should also have.

4. Abstract Problems

This following section illustrates the approach to problem generation and
:;olution which is used to find answers to the above questions.

Certain subclasses of a given collection of problems are represented by a
structure called a basic abstract problem. Some relations on abstract problems

are introduced and a partial order on them can be defined. A complex abstract
problem is one that is constructed from several basic abstract problems. Con-
siderations of composition techniques using the relations are made.-

To each basic abstract problem there will correspond a problem solver, or
solution method. Corresponding relationships for solution methods are also
considered. A complex abstract problem will be-solvable using a combination of
the problem solvers associated with its basic abstract problem constituents.

Dofinitions and Elementary Results

An abstract problem is defined to be a triple of the form ((unknown)(data)
(relation)) where (unknown) is a list of%variableis'whose-valiles

solution to a problem represented, (data) is a list of input'variables, and

(relation) defines a function which assigns unique values to the unknowns for
each list of data values.

An abstract problem which. is input to the first phase of problem generation
is said to be basic. Basic abstract problems are assumed to be solvable, that is
have a given associated solution routine.

_ For example, ((FORCE) (MASS ACCELERATION) (SFORCE MASS ACCELERATION)) is a
bill;ic abstract problem.

An interpretation (unevaluated) of an abstract problem is defined to be an
association of properties, cbjects, relationships to the data and the unknown.
The dssociations must be senantically meaningful (for example, according to a
:lemantic network) with respect to the sublists of the problem representation.

38

-32-

For example, an interpretation of the abstract problem given above might

be the association of a physical object with properties of mass, acceleration,

and another physical object with the property force, such that the second object

exerts its force on the first object. A problem in the class represented might be:

a ball has a mass of x pounds and an acceleration of y feet per second. What

force kas exerted on it when it was hit by a bat?

The predicate of an abstract problem ((unknown)(data)(function)) is the

predicate PR such that PR (unknown data) is true if and only if the value(s) of

the unknown(R) are the value(s) given by the function defined by (function) when

evaluated on (data). Predicates can be used for formal proofs concerning abstract

problems. If the predicate of a problem can be proved from the predicates of

basic abstract problems, the structure of the solution in terms of basic solution

procedures is determined by the proof.

A. Constructions on Abstract Problems

The constructions on abstract problems involve set theoretic and functional

operations. Constructions include subproblem, specialization, generalization,

analogy, transformation, union (or concatenation), composition, cascade, and

domain dependent constructions. These constructions are implemented as operators

which apply, on the one hand, to sublists R. and, on the other, to solution

routines S.. The main syntactic generative operations are union, composition,

cascade, and certain kinds of transformations. Subproblem is a decomposition

technique which yields, ultimately, basic problems. Specialization, generalization,

and analogy are also special cases of transformation. They have a syntactic

aspect but also involve unsolved semantic issues.

B. Power_

A problem generation and solving system is described by a triple (C R S)

where R is a representation for the class of problems C which can be solved by

the solution method S.

The size and variety of C is one measure of the power or capability of such

a system. Power can be increased by enlarging C while keeping S fixed 2) enlarging

C while extending S or by 3) decreasing the degree of specialization required of

the user to implement S while keeping C and S (the method) fixed.

39

-33-

The following discussion is primarily directed towards 1) and 3). For

example,let({C.},{R.},{S.1) bena collection where C. is a subclass of

problems represnted by Ri and solvable by Si and the collection is part of a

CAlsystem.C.deals with a-particular concept of the course, R. may be a

generative grammar or a generation routine which generates problems dealing with

the concept, and Si solves the generated problems and monitors the student solutions.

The system can be extended by simply adding more basic elements, (Ci, Ri, Si).

Relations on the basic elements could be defined. This introduces a structure

cn the collection of basic elements, which can be represented by a graph, called

a concept graph in a CAI application (13). The intent of the relations is to

increase the size of C=1U.C. or to decrease the degree of specification required1
to express solution routines. The relations, in effect, serve as part of the

control structure. Koffman used the relations of subproblem and prerequisite

problem and these determined possible calling sequences among the routines {R.1
1

and{S.1. The relations will serve as part of the definition of a generation

map so that a set of elements (or abstract problems) can be represented and

replaced by another smaller set of basic elements and a generation map. Finally,

the system could be made more powerful by giving it the capabilities of deter-

mining the structures on the basic elements or of determining when the relations

hold rather than having the structures explicitly stored or indicated, say by a

graph.

The basic abstract problems are those which will be used as building blocks

out of which complex abstract problems, not explicitly represented, can be constructed.

Further, the basic abstract problems are assumed to be solvable, and, depending

on the constructions used, the complex abstract problems will also be solvable by

an appropriate combination of the basic solution routines. We will be interested

in studying the effect of problem operations on problem generation and problem

solution routines.

C. Union

LetP.andP.betwoabstractproblemswit and4 1 3 1 1
R.=((V)(XJ4)(S.)) with predicates PR. and PR. respectively.
1 7 1 3'

TheunionorconcatenationofP.andF.denoted P. U P is defined to be
1 3' 1 j '

MYI)U(0)) (0Ci)U(0)) (S
P

)) where S
P U is a solution routine for all

1
.0 P. . P3 .

3 1
'240

4 0

-34-

the problems represented and is determined by the conjunction of PR1 and PR..
'U', union, on the variables indicates set union. Tia'StiPericript denotes a

list of variables.

The union of problems is depicted by the diagram

xi P.
1

P.

P. U P
1 j

The implementation of union of problems is denoted by PUNION.

D. Composition

Another syntactic type of operation is composition. Composition makes use

of substitution, which, also, is at the 'heart' of resolution. Moreover, composition
is fundemental to LISP.

SupposeP.=((Y)(Xi)(Si)) and P. = ((Y1)(X1)(S.)) where Y. is a single element
1

and (Y
i
)c: (0)

P *P.,thecompositionofP.andP'.is defined to be ((Y1)((X1) U1 .3

((X1)-(Yi))) (Sp .p.)) where Sp...p. is determined by the predicate PRi((Yi)
j

(Xi)) A PR.((0)((y.) U
) 1

Diagrammatically, Pj Pi is given by

xi P.
1

Y.
1

Pi
yi

41

-35-

The implementation of composition is called PCOMPOS.

E. Cascade

The cascade operation is a generalization of both the union and composition

operations.

Again let Pi = ((Yi)(X)(Si)) and Pi = ((Yi)(0)(Sj)). Also, assume

that (Yi)n(Xj) is not empty.

11.0/01,,,thecascadeonclip.' is defined to be (((Y3)U((Y1) -
3

t;yi)n(0)))) ((xi)U(ocj) - mi)(xi)))) (s 0/0 p)), where S
Pj p.0/0 p.

1

is determined /V the predicate PR. ((Yi)0J))/IPR.((Yj)(((14)roci))tic(0)-
1

((Y)(10(
j
))))).

ThecascadeofP.andP.is illustrated by the following diagram

1)-((yi)n(0))

The implementation of cascade is denoted PCASCADE.

F. Map

Another natural relation which can hold among abstract problems is that of

Illaportransfori as above.

AmapfromP.toP.is a pair (f f
2
) where f

1
: (Y)---(Yj) and f

2
: (Xi)---(Xj)

suchthatifPR.((Y) (X
i
)) is true then PR.(f

I
((Y)) f

2
((X))) is also true.

3

Then, if P. is an abstract problem and f=(f f
2
) is a pair of functions

such that PRi((Y
1
)(X

i
)) true implies that PRi(f1 ((Y1)) f2((X 1))) is true, then

the construction by map gives the abstract problem f(P) =

(S.)).

If the condition on the predicates does not hold it will be necessary to

m()(15fy Si to obtain a new solution routine.

42

-36-

lt is possible to define equivalence and partial orders of abstract problems

and these could be shown to be preserved by a map of abstract problems.

A simple example of a map for elementary physics is one which changes the

units of measure.

The definition of a higher order map would include changes to the solution

routine in addition to the variables. Thus, a higher order map would be a triple,

(f,ci..),,./liereflaricif2areasabovearldf3modifiess.such that f (S.)
'2' 3 ' 1 4 3

,-ssirns the proper values to fi((Yi)) for data values of f
2
((X1)).

Some special types of maps are analogy, specialization and generalization.

An implementation of a map wil] be labeled TRANS.

S. :;olution Routines

Solution routines for problems resulting from the above constructions are

determined by predicates obtained from corresponding logical operations on the

predicates of the operand problems.

The solution routines for constructed problems can, therefore, be obtained

from solution operators which correspond to the respective logical operations.
_

Thesv 'eOitition operators operate on basic solution routines to synthesize complex

solution routines.

Implementations of the solution operators for PUNION, PCOMPOS, AND PCASCADE

will be termed SUNION, SCOMPOS, AND SCASCADE, respectively.

Using this notation union of abstract problems, for example, becomes P. U P.
3. 3

(((Yi)IgYi)) (((1)u(0)) (SUNION S. S.)).
1 3

(SCOMPOS (A) (B) (5)) will mean to substitute A for B in the routine S. A

:dmilar notation will be used for SCASCADE.

Propositions:

It is easily seen that PUNION is associative and commutative. PCOMPOS and

PCASCADE are associative.

Also,ifP.is a union of abstract problems, then P. 0 P. can be written as
7

a union, that is o is left distributive over union.

Using the basic abstract problems and the operations of union and composition,

complex problems can be constructed. By the left distributivity of composition

over union each of these complex problems can be written in a standard form.

For example, (PCOMPOS Pi (PUNION P2 (PCOMPOS P3 (PUNION P4 P5)))) =

(PCNION (PCOMPOS Pl P2) (PUNION (PCOMPOS P1 (PCOMPOS P3 P)) (PCOMPOS P1

4 3

-37-

(PCOMPOS P
3

P
5

)))). If PUNION is defined as an n-ary operation (a FEXPR in

LICP), the expression becomes (PUNION (PCOMPOS P1 P2) (PCOMPOS P1 (PCOMPOS P3 P4))

(PCOMPOS P
1

(PCOMPOS P
3

P
5

)))), which has the form (PUNION PaPbPc ...) where

each operand is a basic abstract problem. Similar computations hold for the

solution operators.

These results are used to implement SCASCADE.

Intuitively, SUNION concatenates its argument routines. SCOMPOS makes a

sul)stitution for a variable in a given routine. (SCASCADE (A) (B) (C)) means

lo substitute each element of the list (A) for a corresponding variable in tbe

(B) for each occurrence of that variable in the routine C. Then SCASCADE

canDeimplementedbyfirstputtingthecomplexsolutionofP.(in P, 0/0 P.)

in standard form and repeatedly applying SCOMPOS until all the substitutions

have been made.

h. Control

The control which specifies the manner in which abstract problems are combined

and how a solution routine is synthesized is contained within the operators

themselves. The decision when to apply the openators and which problem operands

to be operated on is made by a planning routine. For some applications, the

planning routine need only consist of a random selection mechanism for selecting

operators and problem representations to be operated on. For instance, for

problem generation for CAI, such decisions could be made randomly, with constraint

1.01 a complexity measure.

For other applications and other operators, the planning routine will need

semantic information. In these situations the planning routine could, incorporate

path tracing and pattern matching mechanisms for tracing within a semantic network.

There is an analogue with programming languages. Here the concern is that

of combining lists and procedures using operators via a planning routine rather

than combining elementary statements via a program. Also, here the attempt is

to incorporate decision making capability within the planning routine.

7. Computational Issues

Given n basic abstract problems, the number of meaningful abstract problems

which can be generated using PUNION, PCOMPOS, AND PCASCADE can easily be seen to

1,ounded below by n and above by 2n-1.

Thil, does not say that the number of meaningful representations generated

wiH ,Ipprouch lhe upper bound. The actual number which can be generated depends

on te mutual relevance of the given n basic representations. For 11 applications

44

-38-

most useful problems will be the result of at most 3 cr 4 applications of the

operators.

On the other hand recall that the discussion still pertains to the represent-

ation level and each representation will be used in conjunction with, say, a

semantic net to produce many specific problems.

Another example

The above operators are natural ones for quantitative subjects and for use

in LISP.

Suppose a list of basic abstract problems from the topic of uniformly

acceleration motion consicts of the following three representations:

1) ((DISTANCE) (AV-VEL TIME) (SDIS AV-VEL TIME)) where distance, average velocity,

and time are written as LISP atoms which point to a semantic net and SDIS is a

LISP function which returns a value for distance given values for average velocity

and time.

2) ((ACC) (VEL-INIT-VEL TIME) (SACC VEL INIT-VEL TIME)) where SACC returns a

value for ACC given velocity, initial velocity, and time as arguments.

3) ((AV-VEL) (VEL INIT-VEL) (SAVVEL VEL INIT-VEL)) where SAVVEL is a LISP

routine which defines average velocity.

PCOMM-, applies to 3) and 1) gives ((DISTANCE) (VEL INIT-VEL TIME) (SCOMPOS

(SAVVEL VEL INIT-VEL) (AV-VEL) (SDIS AV-VEL TIME))), where SCOMPOS substitutes

:he expre!,sion fSAVVEL VEL INIT-VEL) for AV-VEL in the function SDIS before it

I., evaluated.

Transforming 2) and composing with the representation just generated would

p.ive ((DISTANCE)(INIT-VEL TIME ACC) (SCOMPOS (TRAN VEL (SACC VEL INIT-VEL TIME))

(VEL) U1COMPOS (SAVVEL VEL INIT-VEL) (AV-VEL) (SDIS AV -VEL TIME)))).

TRAN would be a symbolic manipulation routine for solving for velocity in

term: of acceleration, initial velocity, and time given (SACC VEL INIT-VEL TIME).

The resulting abstract problem has a solution routine which corresponds to

derivation of the equation distance = (initial-velocity time) + (acceleration
. 2

tIme)/2.

.'onclusions

The paper has represented a model and approach to problem generation and

..oluL;on, wl:ich consists ot an exp/ession duality between problem generation and

preolcm L;olution, a study of the structure of a problem iu terms of basic problems,

!ho exprossion of structural relations as operators and routines, the elevation

4 5

-39-

of some control to a higher level (to a structure on abstract problems and

solution routines rather than one on elementary programming statements). This

approach seems to allow easy incorporation of direction and semantic knowledge,

large inference, steps, and additional inference operators. It is related to

formal logic via the predicate of an abstract problem and has significance for

automatic synthesis of programs because it discusses the synthesis of routines

ot.; of routines rather than elementary statements; for algebraic manipulation,

::.nce it suggests a flexible notation and approach with the possibility of know-

ledge manipulation.

. The model and development provide a context or setting which brings forth

many additional questions such as the incorporation of static knowledge to

extend some of the operators beyond their formal manipulation capability,

questions on the interplay of static knowledge in a data base or net and dynamic

knowledge in the form of routines, 'surgery' for the modification of a routine,

and applications to other problem areas including programming languages.

4 6

-40-

V. A NATURAL LANGUAGE LISP TUTOR

1. Introduction

Natural language understanding is becoming more important in CAI systems.

Many powerful parsers have been developed for very extensive subsets of English

including Wood's parser (14) and Winograd's PROGRAMMAR (15). These methods are

beginning to be of use for question answering sub-systems and for interpreting

student responses. Of particular interest is the work done by Brown et al. (16).

it is his semantically driven fuzzy grammar that has influenced this research.

Brown analyzed student scenarios involving electronic circuit trouble-

shooting and discovered that the concepts and items discussed fell into small

numbers of semantic groupings or categories.

These included: measurements, control settings, circuit elements, and

circuit locations relative to the electronic circuit. The parse was then

accomplished by anticipating and looking for phrases which matched these semantic

categories where they might be appropriate. The parser's fuzziness stems from

the fact that words that are not understood can be skipped over.

Teaching a programming language embraces two major tasks. One is presenting

new material in an orderly controlled fashion. The other involves making available

a friendly, informative environment that allows experimentation, and that can

recognize errors and misconceptions and point them out. With ISLE (Interactive

rudent LISP Environment) we have concentrated on this second item by developing

a computer based environment for LISP. The system knows about the structure and

semantics of the LISP language and can answer questions about LISP data structures,

concepts and functions; both those functions defined by the student and the primitives

internal to the system.

As an example consider the following dialogue:

STUDENT: Is Atom a functior.
MACHINE: Yes, Atom is a subr.
STUDENT: How many arguments does it take?
MACHINE: Atom is a subr and takes 1 argument.

Notice that questions are answered with a complete statement to avoid

any ambiguity, also note the use of the pronoun it by the student. Some limited

anapiloric reference is permitted by the system to allow a more natural dialogue.

4 7

STUDENT: Describe it
MACHINE: Atom is a subr. and a predicate function

*It returns true (the Atom T) if its argument
is an atom, nil otherwise.

STUDENT: What is an Atom?
MACHINE: An Atom is the most elementary type of s-expression.

It may be either a number or a literal atom.

Some words like atom can refer to more than one thing. The correct reference

is found by looking at the context of the word and making a decision based on

p]aral markers, determiners, or qualifying adjectives.

STUDENT: Are property lists kinds of 15.sts?
MACHINE: A property or'P list is an alternating list of literal

atom property names and c=esponding property values.
It can be search using the function GET.

Subset-superset and part-part of relationships are used extensively

by the system for answering questions of this type. A yes answer is implied

here by giving.the student a definition of the subset item.

STUDLNT: Define (UFACT (LAMBDA (X) (COND
((ZER00 X) 1)
(T (TIMES X (FACT (SUB 1 X)))))))))))

MACHINE: Arguments for Evalquote:
DEFINE
(UFACT (LAMBDA (X) (COND((ZER00 X) L) (T(TIMES X
(FACT (SUB1 X)))))))))
VALUE IS:
(FACT)

Any student input that has the form of a function followed by an argument

is assumed to be input for the evaluator. Here the student defines a

function to compute factorials.

STUDENT: FACT (3))
,MACHINE: Arguments for Evalquote:

FACT
(3)

VALUE IS:
Undefined function found.
It is ZEPOO found in the function fact.

In defining FACT the student mistyped ZEROP. The error is found during

ovaluation and returned to the student. Notice that terminating symbols are

nocessary at the end of each student input line. They may be periods, question

marks or an extra right parenthesis.

STUDENT: PRINT FACT.
MACHINE: (LAMBDA (X) (COND & &))

48

-42-

When printing function definitions only the highest elements of the

definition appear; lower level structures are replaced with &.

!;TUDENT: 3 2 p.

MACHINE: ((ZEROO X) 1)

Now uinp, commands to the editor, the student looks at the 'lower level

ho remembers =OP should go.

MDENT: 1 (1 ZEROP) P.
MACHINE: (ZEROP X)

The error is now corrected and this can be checked by evaluation or

hy a:Ainp another question.

STUDENT: Does FACT call 'any undefined functions?
MACHINE: FACT calls no undefined functions.

M'UDENT: FACT (3))
MACHINE: Arguments for Evalquote.

FACT
(3)

VALUE IS:
6

y::tem Orpanization

The system is built around several submodules as shown in Figure 4 Each

tuciont command or request is received by the monitor where it is classified as

input for either the editor, the evaluator, or the parser. Any input which is not

s.ilher a list of edit commands or a function followed by an argument list is

a:.::umed to be a request for information and so is passed to the parser. Anything

parl,er can not handle is rejected and the student is asked to rephrase or

,,p0a1. up the question.

The parser and the semantic routines work together to answer factual

qutions about the LISP language, its data structures and functions, and about

tht functions that student has defined. The parser mechanism has a semantic basis

in that specific words or phrases are looked for that refer to things the system

!now: about, i.e. functions, definitions, or entries in the semantic networks.

The:.o items are divided into groups or categories that are Semantically similar.

rwmilntically similar items are those that might fit in a given slot in a

:.,ntence or uuestion, and that fall into a superset classification such as data

4 9

1---

STUDENT
INPUT

PARSER

MONITOR

SEMANTIC
SPECIALIST
ROUTINES

PERMANENT SEMANTIC
INFORMATION:
DEFINITIONS,
RELATIONS, ETC.

SEMANTIC
NETWORK

EVALUATOR EDITOR

TEMPORARY SEMANTIC
INFORMATION:
DIALOGUE HISTORY,
STUDENT-DEFINED
FUNCTIONS, ETC.

SYSTEM DATA-STRUCTURES

ISLE System Organization - Figure 4

5 0

-44-

structures or function names. The result of the parse is an executable LISP

function whose evaluation causes a response to be generated for the student.

The evaluator evaluates student functions when called upon, accepting nearly

any LISP 1.5 constructions. When student errors are found, it reports the type

of error and in what function it occurred to the student. Editor commands can

laen be used to look around inside of function definitions and to insert, delete,

and change parts of the definition.

THE GRAMMAR AND ITS IMPLEMENTATION

The heart of the English understanding component of the system is a

BNF grammar. After a line has been read in, an interpretation of it is attempted

using an implementation of the grammar shown in Appendix B. In the SOPHIE system [16],

every non-terminal is considered a semantic entity to be searched for when necessary.

In the ISLE system, however, only a few of the rules are actually concerned with

semantic entities or categories. These semantic entities are defined as only those

things which have entry in the semantic network. The rules which embody certain

semantic groups have already been described. The rest of the grammar rules are

used to identify requests for certain relationships or properties of the semantic

entities.

Most programs which make use of a grammar use some kind of parser or

grammar interpreter. This parser (a program) then uses a table or array in which'

the grammar rules are stored (data). Special control structures must be set up

to control backing up when an incorrect parse is begun. In ISLE, this grammar

13 implemented directly in LISP. For each rule (non-terminal) in the grammar,

there is a corresponding LISP function with the same name implementing that rule.

The LISP control structures make this implementation relatively easy due to the

rPcursive definition of LISP functions in general and the use of the special built-in

51

-45-

functions; COND, AND, and OR. Backup is automatic as each rule-function can

let its calling rule-functions know of its failure on return. All pointers and

variable values will again be those originally set in the calling function. There

is nothing to undo or redo as the LISP control structure handles this automatically.

THE SEMANTIC ROUTINES

The parsing operation, if it is successful will produce another LISP

function to be evaluated. Some of these functions and the sentences that produced

them are given in TABLE 11. Each is a call to a predefined semantic routine.

The functions FN, FTYPE, CONCEPT, and STRUCTURE retrieve the desired semantic

information for their arguments. In this way words such as ATOM are disambiguated.

For example, (FN ATOM) will retrieve information relevant to the function ATOM,

while(STRUCTURE ATOM) will retrieve the information concerning the structure.

PREF is used to find semantic information for pronouns which it does by matching

its arguments against the semantic categories of previously mentioned items.

TABLE 11 Sentences and Their Translation Into
LISP Functions

IS ATOM A FUNCTION?

(RELATE (FN ATOM) (FTYPE FUNCTION))

HOW MANY ARGUMENTS DOES IT TAKE?

(ARGCOUNT (LIST (PREF FN)))

DESCRIBE IT.

(DESCRIBE (LIST (PREF FN.FTYPE CONCEPT STRUCURE)))

WHAT IS AN ATOM?

(DESCRIBE (LIST (STRUCTURE ATOM)))

5 2

-46-

ISLE's semantic routines are all specialists for answering their own

,types of questions. Some take information directly from the network to be

given to the student or to be used in comparison or relationship tests.

DESCRIBE, for example, gives the student a pre-defined definition or description

if it exists. In the case of student defined functions, it tells the stident

the type of function it is. RELATE reports on 'superset' 'subset', and 'part-of'

relationships between its arguments. ARGCOUNT checks the semantic information

ar6ociated with its argument, or in the case of student defined functions-the

accual function definition, to tell how many arguments a particular function has.

The permanent semantic information used by these functions is set up as

association lists of relationships and values for each semantic entity. Table 12

shows this information for the structural item atom. The value of the relationship

TEST is the name of a predicate function which tests for the associated semantic

entity. In this case, the function ATOM tests for the structure which is an atom.

TYPE and TYPE OF indicate subset and superset relationships, and DESCRIPTION in-

dicates a literal definition of the item.

TABLE 12 Semantic Information for the Structure ATOM

((TEST ATOM)

(TYPE OF - (S-EXPRESSION INDICATOR))

(TYPE (LITERAL NUMBER))

(PART OF (S-EXPRESSION DOTTED-PAIR LIST))

(DESCRIPTION ((AN ATOM IS THE MOST ELEMENTARY TYPE OF
S-EXPRESSION (DOT))

(IT MAY BE EITHER A NUMBER OR A LITERAL ATOM (DOT)))))

Other temporary information that might be used by the semantic routines

can be created and changed in various ways. When a student defines a function,

the function is analxzed and lists of the variables it binds or uses and the

functions it calls are created. This information is used by the routines which

handle questions about the student's functions and is updated whenever a function

is edited or redefined. The editor and the evaluator also store information that

could'he used by the question-answering system. This is done whenever errors

53

-47-

occur and includes information about the current State of the evaluator of, editor

(e.g. the annociation list) and the cause of the error. This would allow the

'student to obtain more information about the source of the error and what the

evaluator (or editor) was doing before the error occurred.

CONCLUSION

This system is undergoing continued development. The question-answer is

being expanded to allow the student to get more of the information he or she might

want and to perform more edit functions in English.

ISLE is implemented in LISP which runs interactively on an IBM 360/65.

This interactive LISP is an improved version of the Waterloo LISP which uses a

cathode-ray display as the active user terminal.

Preliminary indications are that the system will serve as a useful tool for

Familiarizing a student with LISP concepts. The question answering capability

allows a student to inquire about the semantics of LISP; he can use the LISP student

evaluator to test his knowledge of LISP syntax and to help him correct his errors.

The expanded diagnostic information presented should help him clear-up initial

misconceptions and ease his transition from ISLE to the standard LISP evaluator.

This approach appears to be general in that one could present any material

of a factual nature in a similar manner. SOPHIE [16] is an example of a similar

system for teaching electronic-circuit analysis and trouble-shooting. Other

programming languages, logic circuit design, and basic algebra and calculus might

possibly be taught using a similar computer environment.

5 4

-48-

VT OVERALL EVALUATION

This project has studied the topics of student modelling, concept selection,

generative CAI, problem generation and solution, and natural language in CAI.

AL; a vehicle for the study of these topics, several experimental teaching systems

have been designed and implemented.

An introductory course in digital design and programming which utilizes the

r:v!.:tems described in Sections I, II and III of this report has been taught to five

:.ections of students. (approximately Menty-five students/section). The results

of this experiment have been described above and were generally very satisfactory.

The conclusion from this experiment is that genemative CAI is a very effective

medium for teaching quantitative college-level courses. The major advantages are

the guided direction in the problem-solving process provided to beginning students,

and the presentation of instantaneous feedback and remedials when the student goes

astray. Generative CAI also frees the instructor from discussing-routine',_algorithmic

procedures in class, and allows him to concentrate on more complex concepts. Through

the use of a monitor which makes nintelligentq decisions concerning the concept

to be studied, the difficulty of the problem to be generated, and the degree of

explanation and student monitoring pTovided; instruction can become highly individual-

ized. In this way, the system makes the maximum use of each computer session.

The student is also free to proceed at his own pace and override any of the monitor's

decisions.

The major drawback to generative CAI is the cost of designing and operating

these systems. The design was, of course, a one-time expense and entailed many

man-hours of effort. Unfortunately, there is no accurate acdounting available

of the time spent in the implementation of this system. Many routines were written

by the principal investigator; some were implemented as portions of Master's

Thesis; others were independent study projects.

The cost of operating the system averages out to approximately $100 per

student per semester. This provides on the average of four terminal hours per

:-itudent per week. Certainly, this is expensive compared to the design goal (not

yet'attained) of the PLATO system of $.50 per terminal hour per student. Unlike

PLATO, it should be noted that this system was not implemented on hardware

configured and intended exclusively for CAI; rather, it was implemented on the

IBM 360/65 computer which was not really designed for time-sharing.

55

-49-

To provide the same degree of individualized instruction for twenty-five

students would require hiring five graduate assistants (assuming a 20 hour/week

workload). The cost of five graduate assistants for a semester would be approxi-

mately $8,000. The cost of generatiietkI (afkOkimatelY $3500) would Ile cbnaider-

ably less.

Additional studies in the use of Artificial Intelligence techniques have

provided a general model for the generation and solution of problems (Section

IV). This model also appears to have applicability in areas of artificial

Intelligence research such as Problem Solving and Program Synthesis.

A hardware-software system was constructed for use in the digital laboratory.

This system was very successful in teaching students how to apply classroom

concepts in the design of actual digital circuits.

In addition to the system described in Section III, a digital services

system was built which acted as a "front-end" for the original system. The digital-

services system aided students in all phases of the design problem and subsequently

transferred control to the debugging phase of the original system to verify the

cot,-Pectne4t; of the student's design. Any hardware bugs or faults were located,

with student asy;istance, and eliminated.

nod.el for a natural language CAI system previously proposed by Brown (16)

wai, adapted fur use in an Interactive Student-oriented LISP Environment (ISLE).

The implementation of this system was relatively straight-forward once the LISP

iuterpre,ter 44/as modified to run interactively on the IBM 360/65. Its use verified

thdt AI research an natural-language processing could be effectively applied in

the design of teaching systems.

One interesting feature of all of the research decribed herein is the broad

spectrum of teaching activities and techniques covered. The activities range

from electrical engineering courses in the theory, design, and laboratory construction

of digital circuits to computer science courses in machine-language programming

and the LISP computer language. Contributions were also made to problem generation

Jnd solution in general as well as problem-generation in high school algebra (5).

Tho computerized teaching tezhniques included generative CAI, which was normally

under system control, a digital circuit debugger which provided a mixture of

:;tudent and system control, and finally a LISP learning environment which was

entirely under student control

56

-50-

This research is a small step in the application of Artificial Intelligence

techniques to CAI. It is expected that future research along these lines will

contribute to the continued growth of Artificial Intelligence and provide signi-

ficant enhancement to the intelligent use of computers in instruction.

.\

-51-

REFERENCES

1. Bobrow, D., "A Question-Answering System for High School Algebra Word Problems,"
in Proc. AFIPS Fall Joint Computer Conference, pp. 591-614, 1964.

2. Winograd, T., "Understanding Natural Language," New York, Academic Press, 1972.

3. Nilsson, N., "Problem-Solving Methods in Artificial Intelligence," McGraw-
Hill, 1971.

4. Koffman, E. B., "Design Techniques for Generative Computer-Assisted Instructional
Systems," IEEE Transactions on Education, Vol. E-16, No. 4, ppl. 182-189,
November, 1973.

5. Gilkey, T. J., -and Koffman, E. B., "Generative CAI in High School Algebra,"
Proceedings of the International Computing Symposium 1973, pp. 489-493,
North Holland Publishing Co., 1974.

6. Koffman, E. B., amd Blount, S. E., "A Modular System for Generative CAI in
Machine Language Programming," IEEE Transactions on Systems, Man and
Cybernetics, SMC-4, No. 4, pp. 335-343, July, 1974.

7. Samuel, A., "Some Studies in Machine Learning Using the Game of Checkers,"
IBM J. Research and Development, Vol. 3, No. 3, pp. 211-229, 1959.

S. Walrath, S. J., "A Heuristic Monitor for Individualizing Instruction in CAI,"
unpublished M. S. Thesis, Electrical Engineering and Computer Science Dept.,
University of Connecticut, Storrs, Ct. 1974.

9. IBM Corporation, "Conversational Programming System (CPS) Terminal User's
Manual," -IBM Report, GH-20-0758-0, 1970.

10. Koffman, E. B., and Blount, S. E., "Artificial Intelligence and Automatic
Programming in CAI," Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, Stamford, Calif. 1973.

11. Neal, J. P. and Meller, D. V., "Computer-Guided Experimentation - A New
System for Laboratory Instuction," IEEE Transactions on Education, Vol.
r-15, No. 3, August, 1972.

12. Polya, G. How to Solve It, Second Paperback Printing 1973, Princeton
University Press, Princeton, N. J., 1973.

13. Koffman, E. B. "A Generative CAI Tutor for Computer Science Concepts,"
Proceedings fo the AFIPS 1972 Spring Joint Computer Conference, 1972.

14. Woods, W. A., "Transition Network Grammars for National Language Analysis,"
Communications of the ACM, Vol. 13, No. 10, October, 1974.

15. Winograd, T., Understanding National Language, Academic Press, New York,
1973.

16. Brown, J. S., Burton, R. R., and Bell, A. G., "SOPHIE" A Sophisticated Instruc-
tional Fnvironment for Teaching Electronic Troubleshooting," Bolt, Beranek,
and Newman Report No. 2790, Cambridge, Mass. March 1974.

58

APPENDIX A

EXAMPLES OF PROBLEM GENERATION

The following illustration uses nine basic problems from the area of

el.ementary physics. Problem representations are generated at random. In order

to reduce duplication generated abstract problems were hashed using the MACLISP

system function SXHASH and tte number values stored. Repetitions are still possible

since, for example, (SXHASH '(A B)) (SXHASH '(B A)), yet (A B) = (B A) as sets.

Hov,zver, the amount of repetition is drastically reduced.

For this session the solution operators were executed to produce the

solution routines. All of tHe generated routines have no lambda varidbles or

prog variables; all the variables are global to the session.

Note problem representation 4. It was decided to allow the union of two

problems where the input of one is the output of the other. The intent is that

on an intepreted level this will take the form of two different instances of the

same variable (e.g. an av-vel, and an av-vel).

Twenty-three distinct problems and their solution routines were generated

before the session was terminated by typing in NIL. Problem 23 is a nice example.

G0016 means that 16 'DEFUN' rotuines were generated.

Notice that the third basic problem was not output; the PLAN routine uses

a random or nondeteministic control structure.

Complexity refers to the utziber of operators applied. It gives one measure

of the difficulty of a problem and provides one way of defining a partial order.

(MAIN)
(ENTER OPERATOR NAME) PUNION
(ENTER OPERATOR NAME) PCOMPOS
(ENTER OPERATOR NAME) PCASCADE
(ENTER OPERATOR NAME) NIL
(ENTER PROBLEM TUPLES) ((FORCE)(MASS ACCEL) (SFORCE MASS ACCEL))
(ENTER PROBLEM TUPLES) ((ACCEL) (VELI VEL 2 TIME)(SACCEL VEL1 VEL2 TIME))
(ENTER PROBLEM TUPLES) ((AV-VEL) (VEL1 VEL2)(SAV-VEL VEL1 VEL2))
(ENTER PROBLEM TUPLES) (DIST)(AV-VEL TIME)(SDIST AV-VEL TIME))
(ENTER PROBLEM TUPLES ((ACCEL)(GRAV)(SEQ ACCEL-GRAV))
(ENTER PROBLEM TUPLES)((WEIGHT)(MASS GRAV)(SWEIGHT MASS GRAN))
(ENTER PROBLEM TUPLES)((MOMENTUM)(MASS VEL)(SMOMENTUM MASS VEL))
(ENTER PROBLEM TUPLES)((IMPULSEXFORCE TIMWSIMPULSE 'FORCE TIME))
(ENTER PROBLEM TUPLES) NIL
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY)-2
UNKNOWN:
(ACCEL) 5 9

DATA:

(GRAV)

Appendix A-2

SOLUTION:
(SEQ ACCEL GRAV)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN
2(CENTRI-ACCEL)

DATA:

(VEL RADIUS)

SOTUTION:

(SCENTRI-ACCEL VEL RADIUS)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
3(AV-VEL MOMENTUM)

DATA:

(VEL1 VEL2 MASS VEL)

SOLUTION:

(DEFUN G0001.NIL (PROG NIL (SAV-VEL VEL1 VEL2) (SMOMENTUM MASS VEL)))

(ENTER GO OR NILL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
4(DIST ACCEL AV-VEL)

DATA:

(TIME VEL1 VEL2)

F.OLUTION:

(DLFUN G0002 NIL (PROG NIL (SDIST AV-VEL TIME) (SACCEL VEL1 VEL2 TIME)(SAV-VEL VEL1 VEL2)))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
5(ACCEL)

DATA:

(VEL1 VEL2 TIME)

DOLUTION:

(SACCEL VEL1 VEL2 TIME)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
GUNKNOWN:'

'

(CENTRI-ACCEL FORCE)

(1:2p1icate prcblem generated

6 0

Appendix A-3

DATA:

(VLL PADIUf. CPAV MASS)

:;OLUTION:

(DEFUN 00003 NIL (PROG NIL (SCENTRI-ACCEL VEL RADIUS) (SFORCE MASS (SEQ ACCEL GRAV))))

(ENTER GO OR NIL) GO
(ENTLP COMPLEXITY) 2
ENTER TO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:

7(MOMENTUM IMPULSE)

DATA:

(MASS VEL FORCE TIME)

!;OLUTION:

(DEFUN G0004 NIL (PROG NIL (SMOMENTUM MASS VEL) (SIMPULSE FORCE TIME)))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:

8(ACCEL WEIGHT)

DATA:

(VEL1 VEL 2 TIME MASS GRAV)

SOLUTION:

(DEFUN G0005 NIL (PROG NIL (SACCEL VEL1 VEL2 TIME) (SWEIGHT MASS GRAV)))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2

(ENTER GO OR NIL) GO
(rNTER COMPLEXITY) 2
UNKNOWN.:

q(DIST ACCEL)

DATA:

(AV-VEL VELI VEI.2 TIME)

OLU7ION:

(DEFUN G0008 NIL (PROG NIL (SDIST AV-VEL TIME)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
10(IMPULSE)

DATA:
(FORCE TIME)

(SACCEL VEL1 VEL2 TIME)))

r.OLUTION:

(DEFUN G0007 NIL (PROG NIL (SIMPULSE FORCE TIME)))

6 1

Appendix A-4

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
11(ACCEL DIST)

DATA:

(GRAN/ AV-VEL TIME)

SOLUTION:

(CEFUN G0008 NIL (PROG NIL (SEQ ACCEL GRAV) (SDIST AV-VEL TIME)))

(INTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL),G0
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 3
12UNKNOWN:

(CENTRI-ACCEL ACCEL WEIGHT)

DATA:

(VEL RADIUS MASS GRANT)

sOLUTION:

(DEFUN G0009 NIL (PROG NIL (SCENTRI-ACCEL VEL RADIUS) (SEQ ACCEL GRAV)(SWEIGHT MASS GRAN)))

(ENTER GO OR NILL) GO 3
(ENTER COMPLEXITY) 3
13 UUKNOWN:
(DIST FORCE CENTRI-ACCEL)

hATA:

(AV vFL TIME MASS ACCEL VEL RADIUS)

:(11EFUN G0010 NIL (PROG NIL (SDIST. AV-VEL TIME) (SFORCE MASS ACCEL) (SCEN TRI-ACCEL VEL
RADIUS)))

(ENTER GO .OR NIL)
(TRY AGAIl)
(ENTER (40 OR NIL) GO
(ENTER OOMPLEXITY)

UNKNOM
(AVIn%T CENTRI-ACCEL)

DATA:
(MASS GRAV VEL RADIUS)

:OEUTION:
(DERN G0011 NIL (PROG NIL (SWEIGHT MASS GRAV) (SCENTRI-ACCEL VEL RADIUS)))

62

Appendix A-5

(ENTER GO GR NIL) GO
(ENTER COMPLEXITY) 3
UNKNOWN:
15(FORCE)

nATA:

(MA:;S ACCEL)

::OLUTION:

(sromE MASS ACCEL)

(hNTER GO .OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:

IG(FORCE ACCEL IMPULSE)

DATA:

(MASS VEL1 VEL2 TIME)

::OLUTION:

(DEFUN G0012 NIL (PROG NIL (SFORCE MASS ACCEL)(SACCEL VEL1 VEL2 TIME)(SIMPULSE FORCE
TIME)))

(ENTER GO OR NTL) GO
(ENTER COMPLEXITY)2
UNKNOWN:

17(I1PULSE ACCEL)

DATA:

(MASS VEL1 VEL2 TIME)

OLUTION:

(DEFUN G0013 NIL (PROG NIL (SIMPULSE (SFORCE MASS ACCEL) TIME) (SACCEL IEL1 VEL2 TIME)))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
UNKNOWN:
18(DIST)

DATA:

(AV-VEE TIME)

:ioLUTION:

(:;DIST AV-VEL TIME)

(ENTER GO OR NIT.) GO
(ENTER COMPLEXITY) 1
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 1
UNKNOWN:

H(MOMENTUM)

DATA:

(MASS VEL)
6 3

Appendix A-6

SOLUTION:
(SNOMENTUM MASS VEL)

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 1
UNKNOWN:
20(FORCE)

DATA:

(GRAV MASS)

!;OLHTION:

(SEORCE MASr, (SEQ ACCEL GRIN))

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 1
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 1
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
2IUNKNOWN:
(IMPULSE FORCE)

DATA:

(VEL1 VEL2 TIME MASS)

'

SOLUTION:

(DEFUN G00012 NIL (PROG NIL (SIMPULSE FORCE TIME)(SFORCE MASS (SACCEL VEL1 VEL2 TIME))))

(ENTER GO OR MIL) GO
(ENTER COMPLEXITY)2
(ENTER 00 OR NTL) GO
ENTER COMPLEXITY) 2
UNKNOWN:

21(CENTRI-ACCEL WEIGHT)

DATA:.

(InT RADIUS MASS GRAV)

SOLUTION:
(DEPUN G0015 IL (PROG NIL (SCENTRI-ACCEL VEL RADIUS),(SWEIGHT MASS GRAV

(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2

-(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER COMPLEXITY) 2
(ENTER GO OR NIL) GO
(ENTER'COMPLEXITY) 3
(UNTI:P GO OR NIL) GO

(ENTER COMPLEXITY) 3
UNKNOWN:
22(WEIGHT) 6 4

)))

Appendix A-7

HATA:
f;PAV)

:0EUTION:

(SWEIGHT MASS GRAV)

(ENTER CO OR NIL) GO
(ENTER COMPLEXITY) 3
UNKNOWN:
23(MOMENTUM IMPULSE)

WTA:
VEL2MASS'VEL TIME)

!;OEUTION:'

(DEEUN C0015 NIL (PROG NIL (SMOMENTUM MASS VEL)(SIMPULSE (SFORCE MASS (SACCEL VEL1
VEL2 TIME)) TIME)))

(ENTER CO OR NIL). NIL .

26.45
kilo-core-sec=860

6 5

APPENDIX B

ISLE'S BNF GRAMMAR

INPUT :: =<EDIT REVAL>i<REQUEST>

= any valid string of LISP edit commands

-EVAL>:: = any valid pair of items of the form function arglist for evalquote.

,REQUEST>:: = <DEFINE/Q>/<RELATION/Q>/ TEST/Q>/<COMPARISON/Q>/
<VAR/Q>/<#ARGS>/<FN/STRU/Q>/<EDIT/Q>/<FN/REF>

.DETINE/Q>:: = DEFINE

'L

DESCRIBE
WHAT is/are*

*Does - DO ir DO - Do are also possible.

<THINGS> ELIKE*7

WITH
POMPAR1SON/Q> : COMPARE <THINGS> < THINGS>-

TO

WHAT IS/ARE THE DIFFERENCE(S) BETWEEN <THINGS>

[HOW] IS/ARE <THINGS>

[HOW] IS/ARE*** THINCS>

DIFFERENT FROM
SIMILAR TO
THE SAME AC

DIFFERENT***

** DO or DOES DIFFE'R FROM a/so works.

*** SIMILAR, THE SAME, DO - DIFFER also work.

IT, THEY

-RELEATION/Q>:: = IS/ARE
<FN/TYPE>
<FNNAME>
<STRUCTURES>

TEST/Q >:: = IS

<THINGS>

KINDS of
A TYPE OF <FN/TYPE>

<STRUCTURES>
etc.

c<

<STRUCTURES>
FN/TYPE>
DEFINED
I

The underscore will match anything. In this way, sentences
like: 'Is H123 on atom?' and "Is F3 defined?' will be recognized:

66

6

Appendix B-2

cVAR/O>:: = WHAT [VARIABLE(S)] <FN & VRS> [THAT

& VRS>:: = DOES
CAN
WILL
etc

ARE
CAN BE
MAY BE
etc.

,#ARGS >:: = HOW MANY

<FN/STRU/Q = WHAT

[CANDOES

IT

<FNNAME>

BOUND
SET
SET

/--

BIt?
SET
SET

frN3

ARGUMENTS*

il

<FN/TYPE> ARE
IS

CALL(S)

-<_7FNNAME>

IT

EWWHO
HAT

ARE <FN&VRS>]

IT

ENNAli3
FNTYPE

CALLED BY

IT, HIM, Hi9
<FNNAME>

DOE! T:FNNAM9
CAN IT

DOES <FNNAME>
) CAN
WILL IT, HE, SHE
MAY

<FNNAME>
IT CALL

USED 1
ALLED

* ARCS also works here.
** also possible are CAN, CALL, MAY CALL, etc.

67

CALL

[
E'

ANY
[OF]

SOM

FINROM

BY

HAVE
NEED
TAKE

IT, HIM, HE ESOMEHOW
<FNNAME> IN cTSOMF2 WAY

ANY

CALL

CALL(S)** < FNNAME>
IT

:

<FNNAME.>\

1

FN/TYPE>
IT, THEM,

_.

ITSELF _...,/

FNNAME>
<FN/TYPE>

IT

THEM

PRINT
<EDIT/Q>:: = EDIT

PRETTYPRINT

Appendix B-3

<FNNAME>

CAR
.FN/REF = What is the CDR

CADR

'THINGS >:: = IT, THEY, THEM
<CONCEPTS >

<FN NAME>
<FN/TYPE>

___.

<STRUCTURES >

etc

<STRUCTURES>

[AND <THINGS>.]

68

